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An implicit unfactored SSOR algorithm has been added to the overset Navier-Stokes CFD 

code OVERFLOW 2 for unsteady and moving body applications.  The HLLEM and HLLC 

third-order spatial upwind convective flux models have been added for high-speed flow 

applications.  A generalized upwind transport equation has been added for solution of the 

two-equation turbulence models and the species equations.  The generalized transport 

equation is solved using an unfactored SSOR implicit algorithm.  Three hybrid RANS/DES 

turbulence models have been added for unsteady flow applications.  Wall function boundary 

conditions that include compressibility and heat transfer effects have been also been added to 

OVERFLOW 2. 

Nomenclature 

A = linearized flux in the ξ direction 

B = linearized flux in the η direction 

C = linearized flux in the ζ direction 

c =  chord length 

E = inviscid and viscous flux in the ξ direction 

e0 = total energy 

F = inviscid and viscous flux in the η direction 

G = inviscid and viscous flux in the ζ direction 

k =  turbulent kinetic energy 

mm = update level for SSOR 

Pk = production of turbulent kinetic energy (k) 

p = pressure 

s =  distance normal to a wall 

T =   temperature 

t = time 

u,v,w = velocity vector components 

uτ = friction velocity 

V  = computational cell volume 

x,y,z = coordinate directions 
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X =  eigenvector 

y
+
 = nondimensional wall distance (ρ uτ s/µ) 

ε =  turbulent dissipation 

Λ = eigenvalue  

µ = molecular viscosity 

µt = eddy viscosity 

ρ =  density 

σL = laminar Schmidt number 

σT = turbulent Schmidt number 

τ =  pseudo time variable for dual time stepping 

ξ,η,ζ = curvilinear coordinates 

Ω = relaxation parameter for SSOR 

ω =  specific dissipation 

 

Subscripts 

∞ = free stream or reference value 

i = spatial increment counter 

 

Superscripts 

m = subiteration counter 

n =  time step iteration counter 

I. Introduction 

he OVERFLOW 2
1,2

 Navier-Stokes computational fluid dynamics (CFD) code was developed by merging the 

OVERFLOW
3,4

 flow solver with the 6-degee-of-freedom moving body capability of the OVERFLOW-D flow 

solver
5,6,7

.  The OVERFLOW code is a structured grid overset
8
 Navier-Stokes flow solver.  The OVERFLOW flow 

solver originally incorporated the diagonal form of the implicit approximate factorization algorithm of Pulliam and 

Chaussee
9
 and a second-order in space central difference approximation for the inviscid fluxes.   Mixed second and 

fourth order smoothing was added to the explicit and implicit side of the equations to provide numerical stability.  A 

number of upgrades have been made to the original code including: 

 

1. Lower Upper-Symmetric Gauss Seidel (LU-SGS) implicit solution algorithm and a Roe upwind 

inviscid flux scheme
10

 

2. Multigrid solution procedure, low-Mach preconditioning, and a central difference/matrix dissipation 

inviscid flux scheme
11

 

3. Parallization with OPENMP and MPI
12

 

4. AUSM inviscid flux  scheme
13

 

5. Dual time stepping implicit solution algorithm
14

 

 

The inclusion of a moving body capability and the increase in unsteady flow applications has led to a search for 

more robust implicit time marching algorithms both for the flow solver and for the scalar transport equations 

(turbulence and species) contained in the code.  More robust algorithms are also required for hypersonic 

applications.  Hypersonic applications require low numerical diffusivity to accurately resolve the waves in the flow, 

yet also require robustness for the large discontinuities in the flow that can occur near shocks.  This effort attempts 

to improve the current code by adding the following: 

 

1. HLLEM
15

 and HLLC
16

 inviscid Riemann flux algorithms 

2. An unfactored Successive Symmetric Over Relaxation (SSOR) implicit solution algorithm 

3. A robust and accurate algorithm for solving the transport equations based on the unfactored SSOR 

algorithm 

4. Three hybrid Reynolds Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) turbulence 

models 

5. Wall functions for the transport equation turbulence models 

T 
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II. Numerical Algorithms 

The Navier-Stokes equations may be written in generalized coordinates as 
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where q
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The traditional linearized implicit form of Eq. (1) including subiterations is given by 
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Here θ=0 for first order time differencing, and θ=½ for second order time differencing.  An artificial time term 
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t
 has been explicitly added.  The pseudo time (∆τ) may vary throughout the flow field when a local 

time step is employed.  The artificial time term must converge at each physical time step (i.e. ∆q
n+1,m+1 

= 0) to assure 

time accuracy.  The explicit viscous and inviscid fluxes are included in the term RHS  given by 
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Eq. (3) has the general matrix form Ax=b. The first bracketed term in Eq. (3) is the left hand side matrix A.  The 

second bracketed term in Eq. (3) represents the vector b.  ∆q
n+1,m+1

 = q
n+1,m+1 

- q
n+1,m

 contains the change in the 

solution vector at the latest time step (n+1) and subiteration (m+1) when subiterations are employed in the solution 

process.   ∆q
n+1,1

 = q
n+1,1

 – q
n,1

 contains the change in the solution vector at the latest time step (n+1) if no 

subiterations are used.  If the time step remains constant everywhere in the field then Eq. (3) represents a Newton 

subiteration.  If the pseudo time step is allowed to vary throughout the field then Eq. (3) represents a dual time 

stepping algorithm.  In both cases the subiteration is used to improve the accuracy of the solution at each global time 

step.  The individual grids are solved implicitly, but the overset interpolated boundaries are updated explicitly at 

each subiteration.  Hence the subiterations improve the global convergence at each time step by allowing a global 

exchange of information among the grids.   

Solving the above system of discreet equations requires inversion of the A matrix.  Direct inversion of the matrix 

A for three dimensional flows requires a large amount of computational time and memory.  Various approximations 

have been made to expedite the procedure in the past.  Eq. (3) can be factored
17

 in space 
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where the factorization error (Error) is given by 
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The factorization error term in Eq. (5) is usually ignored resulting in an approximate factorization of Eq. (3).  The 

factorization error is scaled by the time step squared and cubed for three dimensional calculations. The factorization 

error is only scaled by the time step and the time step squared for two dimensional and axisymmetric calculations.  

The factorization error can limit or prevent convergence for large time steps.   

The approximate factorization in Eq. (5) is called a three factor alternating direction implicit (ADI) scheme.  A, 

B, and C are block tridiagonal matrices for structured grids with central difference or first order spatial upwind 

implicit flux jacobians.  The factored system can be solved efficiently by inverting the block tridiagonal matrices in 

each direction.   

The A, B, and C matrices in Eq. (5) may be decomposed into eigenvalues (Λ) and eigenvectors (X) as 
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Pulliam and Chaussee
9 

suggested pulling out the eigenvector matrices from Eq. (5), producing the following system 

of equations 
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Eq. (8) results in a scalar pentadiagonal matrix form in each factored direction when mixed second and fourth order 

smoothing is included on the implicit side of the equation.  The approximations used to derive Eq. (8) do affect time 

accuracy for CFL numbers greater than one.  The inversion of a scalar pentadiagonal matrix at each point can be 

done very efficiently, making this algorithm extremely fast in terms of time/iteration/point.  The diagonal schemes 

implemented in OVERFLOW 2 have made the code one the fastest available for obtaining steady state solutions. 

The Pulliam-Chaussee
9
, Beam-Warming

17
, and diagonally dominate ADI (DDADI)

18
 implicit algorithms in 

OVERFLOW 2 are three factor ADI schemes.  The F3D
19

 algorithm is a partially flux-split two factor ADI scheme 

that uses Steger-Warming flux vector splitting.  The LUSGS
10

 algorithm currently in OVERFLOW 2 is an 

unfactored scheme, but does not iterate the matrix solution at each subiteration.  Dual time stepping and local time 

stepping methods have been implemented to improve convergence and stability for these algorithms.  For many 

unsteady applications, the time step required for numerical stability is too small to be practical.  The three factor 

ADI schemes have been the preferred solution algorithm in the past because of their low memory requirements and 

because they are relatively fast in terms of time/point/iteration.  For a grid of dimensions (jd, kd, ld) the memory 

required to store the flux jacobian matrices during the solution process is 19*max(jd*kd, jd*ld, kd*ld) for the scalar 
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pentadiagonal algorithm and  80*max(jd*kd, jd*ld, kd*ld) for the Beam-Warming
18

 algorithm since the matrices 

may be inverted a plane at a time in each computational direction.  

A. SSOR Solution Algorithm 
Several flow solvers have been developed to solve the unfactored system of equations (Eq. (3)) using relaxation 

procedures.  This approach eliminates the factorization error at the expense of more computational work per time 

step and more computational memory since the entire implicit flux jacobian matrix (A) must be stored for the 

solution process.  NXAIR
20

 uses an SSOR procedure.  UNCLE
21

, TURBO
22

, and BEGGAR
23

 use a Gauss-Seidel 

solution procedure to solve the unfactored system.   All four of these codes have been used for a wide range of 

unsteady and moving body simulations.  The unfactored approach from NXAIR was implemented in OVERFLOW 

2.  First order upwind Steger-Warming
19

 inviscid flux Jacobians and central differenced thin-layer viscous Jacobians 

are used.  The NXAIR SSOR procedure can be written as  
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The subscripts L and R denote the left and right blocks respectively of the tridiagonal matrices.  The overbar 

indicates a premultiply by the inverse of the diagonal matrix AD+BD+CD where the subscript D denotes the diagonal 

block of the tridiagonal matrices.  The update level of ∆q during the iterative matrix solution procedure is given by 

mm.  The scheme uses a forward (Jacobi) sweep in j and symmetric (Gauss-Seidel) sweeps in k and l.   For a forward 

sweep in k and l, the update levels are defined as  

 

mmmlmmmlmmmkmmmk =+==+= 2,11,2,11         (10) 

 

For a backward sweep in k and l, the update levels are defined as 

 

12,1,12,1 +==+== mmmlmmmlmmmkmmmk         (11) 

 

A symmetric sweep consists of a forward and a backward sweep.  Multiple symmetric sweeps (normally 10) are 

performed at each subiteration.  The relaxation parameter (Ω) is normally set to 0.9.  The memory required for 

storing the flux jacobians for a grid of dimensions (jd, kd, ld) is 175*jd*kd*ld since the entire flux jacobian is 

required for the inversion process.  Thus the SSOR algorithm requires 2.2*min(jd, kd, ld) times more memory to 

store the implicit flux jacobians than a tridiagonal ADI solver and 19*min(jd, kd, ld) times more memory than a 

diagonal ADI solver.   

A three factor ADI factored Beam and Warming
17

 algorithm based on the upwind Steger-Warming
19

 inviscid 

flux jacobians was also added to OVERFLOW 2 for use in problems with smaller time step requirements.  The 

upwind Steger-Warming inviscid flux jacobians are more compatible with upwind Riemann solvers than are central 

differenced flux jacobians coupled with second order implicit smoothing currently in the code. 

B. HLLEM and HLLC Flux Algorithms 

Several upwind flux methods have been added to OVERFLOW
10,11,13

 to improve the numerical accuracy of the 

code for high speed applications.  Improvements to the implicit algorithm will help to increase the numerical 

stability of these flux methods, but it was also felt that a more robust upwind flux algorithm was required.  The HLL 

family of upwind approximate Riemann flux algorithms was derived by splitting the flow at a node into two 

pressure waves and a contact discontinuity.  The NXAIR code was developed around the HLLEM
15

 Riemann 

algorithm.  The HLLEM algorithm neglects the contact surface and adds anti-diffusion terms to reduce the 

numerical diffusion that results from neglecting the contact surface.   The HLLEM algorithm compares with the Roe 

schemes for accuracy, but has proven to be more robust than the Roe scheme.   The HLLC
16

 Riemann algorithm has 

recently emerged and shows promise for high-speed applications.  The HLLC algorithm is also based on two 

pressure waves at a node, but includes a methodology for handling the contact discontinuity.  The HLLC algorithm 

was found to have the following properties: 

1. Exact preservation of isolated contact and shear waves. 

2. Positivity-preserving for scalar quantities. 
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3. Enforcement of the entropy condition. 

 

These properties are highly desirable for high-speed flow simulation and eliminate the need for an entropy fix to 

prevent carbuncles as required with the Roe algorithm.  Both the HLLEM and HLLC algorithms have been added to 

OVERFLOW 2.  Both of these algorithms use Monotone Upstream-centered Schemes for Conservation Laws 

(MUSCL) extrapolation to reach third order spatial accuracy.  The van Albada, minmod, and Koren
24

 flux limiters 

are available for both algorithms.  A pressure and temperature switch of the form 
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can be used to force the HLLEM and HLLC algorithms towards first order in space in regions of strong gradients 

with the van Albada and minmod flux limiters.  This can be useful during the convergence process when strong 

shocks are present or during the initial solution transient.  

C. New Turbulence Models 
 Turbulence models are essential for high Reynolds number simulations.  OVERFLOW 2 currently includes the 

following turbulence models: 

 

1. Baldwin-Lomax (BL) algebraic model
25

 

2. Baldwin-Barth (BB) one-equation transport model
26

 

3. Spalart-Allmaras (SA) one-equation transport model
27

 

4. k-ω two-equation transport model
28

 

5. SST two-equation transport model
29

 

 

All of these are low-Reynolds number models requiring integration to the wall.  The Spalart-Allmaras model has 

been the most popular in applications because of its accuracy and numerical stability.  The two-equation transport 

models as implemented in the code have suffered from numerical stability issues in large three dimensional 

applications and have been little used.  All of the currently implemented transport models rely on the diagonally 

dominant ADI (DDADI)
30

 solution algorithm and are solved loosely coupled with the mean flow equations within 

the Newton or dual-time subiteration loop. 

 A common scalar transport equation solution algorithm was added for the two-equation turbulence models and 

species equations.  The transport equation of a scalar s in generalized coordinates has the form 
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where U, V, and W are contravarient velocities.  The full diffusion terms are used in this formulation.  Eq. (13) can 

be discretized into the form of Eq. (3).  The convective terms are solved using upwind fluxes.  MUSCL 

extrapolation of primitive variables (ρ, u, v, w) and the conservative scalar variable (ρs) is used to reach third order 

in space using an HLL based Riemann scheme.  The convective fluxes for the turbulence equations are limited to 

second order in space.  The equations are solved using an SSOR algorithm and are loosely coupled from the other 

scalar equations and the mean flow equations through the Newton or dual time subiteration loop.  The following 

turbulence models that utilize the new solution algorithm have been added to OVERFLOW 2 

 

1. k-ω two-equation transport model
28

 

2. SST two equation transport model
29

 including a compressibility correction
32

 

3. SST DES hybrid model
33

 

4. SST Multi-Scale (MS) hybrid model
34

 

 

The Spalart-Allmaras Detached Eddy Simulation (DES) hybrid RANS/LES turbulence model
31

 has also been added
 

utilizing the existing Spalart-Allmaras model in OVERFLOW 2.   

The new two-equation models include stability enhancing features in the treatment of the implicit and explicit 

source terms.  The turbulent production in the turbulent kinetic energy equation is limited as suggested by Menter
35

 

by 

 

( )ε20,min kk PP =                             (14) 

 

This approximation is justified by the fact that these turbulence models were developed for near equilibrium 

turbulence (production = dissipation).  As the turbulence moves farther from equilibrium, the models are not valid 

and need limiting to avoid numerical problems.  This modification removes the problems often encountered in the 

stagnation regions of blunt bodies with two-equation models.  The turbulent kinetic energy equation (TKE) implicit 

source term is given by 

 

TKE source term Jacobian = 
k

Pk ε+
− 2                                    (15) 

 

This helps to maintain diagonal dominance for the implicit matrix and improves the numerical stability of the model.  

A user specified limit on the maximum eddy viscosity has been added to the namelist input for each grid.  The 

default limit on eddy viscosity (µt/µ∞) is set at 200,000.  The new two equation models have robustness similar to 

the existing Spalart-Allmaras one-equation model. 

D. Wall Functions 
 Wall function boundary conditions

36
 were added to OVERFLOW 2.  Wall functions allow the first grid point 

from the wall to be placed at y
+
<100.  This can reduce the number of grid points required for a simulation, improve 

numerical stability, and expand the range of Reynolds numbers for which a given grid can be used.  The wall 

function formulation in Ref. 36 replaces the wall shear stress and heat transfer in the viscous terms of the Navier-

Stokes code with values from boundary layer empirical relationships.  The wall functions use a single function to 

span the boundary layer sub-layer and log-layer.  The turbulence transport variables and the eddy viscosity are 

replaced with empirically derived values at the first point off the wall.  The wall function formulation added to 

OVERFLOW 2 includes the effects of compressibility and heat transfer.  The wall functions automatically turn 

themselves off when the first point from the wall is below y
+
=10.  This automatic feature can be used to improve 

convergence during grid sequencing and multigrid cycles since the wall functions provide a better estimate of the 

wall shear stress and heat transfer as the distance between the first point and the wall is increased.   

The wall functions work with all of the existing and new transport turbulence models in OVERFLOW 2.  All of 

the inviscid flux options within OVERFLOW 2 have been modified to be compatible with wall functions.  The 

fourth order smoothing is turned off at the first point off the wall for the central difference inviscid flux algorithms 

and the symmetric Yee flux algorithm
37

 as recommended in Ref. 36.  The Koren flux limiter
24

 used by the AUSM, 

Roe, HLLEM, and HLLC flux algorithms is turned also off at the first point off the wall.  The minmod and van 
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Albada limiters used by the HLLEM and HLLC flux algorithms require no modification.  The forces calculated 

within OVERFLOW 2 have also been modified to use the wall function derived shear stress where appropriate. 

E. Species Equations 
The original species transport equations formulation in OVERFLOW 2 included convection terms only.  Central 

difference with fourth order smoothing and first, second, or third order upwind fluxes were available for the 

convective terms.  The DDADI scheme was used to provide the implicit solution.  A new solution option for the 

species transport equations based on the generalized transport equation (Eq. (13)) was added to OVERFLOW 2.  

The HLL based upwind convective fluxes use MUSCL extrapolation to obtain second or third order spatial 

accuracy.  The minmod flux limiter is used in the extrapolation process.  Diffusion terms are also included for 

viscous calculations.  The equations are solved using the unfactored SSOR approach.  The species equations are 

solved loosely coupled with each other and the mean flow and turbulence equations through the Newton or dual 

time subiteration loop. 

III. Results 

A.  Timing Study 

Timings of the algorithms in OVERFLOW 2 were obtained for a 50x50x50 and a 100x100x100 Cartesian grid in 

terms of time/iteration/point.  The timings included calculation of the full viscous terms and the new SST two-

equation turbulence model.  The grids were run on a Linux workstation with a 2.8 GHz Intel Xeon processor and 

512 kb of cache.  The code was compiled with the Intel 8.0 FORTRAN compiler with vectorization.  The results are 

shown in Tables 1 and 2.  IRHS and ILHS represent the OVERFLOW 2 input variables for the inviscid flux and the 

solution algorithm respectively.  The diagonalized solution algorithms (ILHS=2, 3, and 4) are the fastest per 

iteration for both grids.  This speed advantage is often offset by slower convergence and less robustness than the 

slower Beam and Warming algorithms (ILHS=0 and 5).  The SSOR algorithm (ILHS=6) is the slowest, but it is also 

the most robust for many applications.  The difference in timings (10%-30%) between the two grids is probably due 

to the small cache size of the test machine. 

B. Inviscid Vortex Convection 

 The ability to conserve the vortex shape and strength is important in many unsteady cases in which a shed vortex 

interacts with bodies well downstream of the vortex origin.  This case can also be used to examine the level of 

numerical dissipation and dispersion for a given flux algorithm.  A vortex of strength Γ=5 is centered on an 81x81 

uniform grid in the x-z plane and allowed to convect downstream at M=0.5 with a non-dimensional time step of 0.1.  

The grid spacing was set to 0.25 in both the x and z directions.  This grid spacing is somewhat coarse for this 

application, but was chosen because it allows the limitations on the numerical schemes to be clearly seen.  The 

vortex is given by 

 

( ) ( )[ ]R
R

−
−Γ

= 15.0exp
2

2

π
ω                                  (16) 

 

where ( ) ( )2

0

2

0

2
zzxxR −+−=  and x0 and z0 represent the location of the vortex center.  The grid is given 

periodic boundary conditions in the flow direction.  This allows the vortex to convect out of and back into the 

computational domain.  The vortex should complete one cycle on the grid (i.e. return to its initial location) every 

200 time steps.  The vortex was allowed to convect for a non-dimensional length of 100 (five cycles through the 

grid).   All of the calculations were run with second order time and three Newton subiterations.  The Roe and HLLC 

algorithms were run third order in space.  The fourth order central difference algorithm was run with a fourth order 

smoothing coefficient of 0.001 and a second order smoothing coefficient of 0.0. 

Vorticity contours for several flux algorithms and the initial vortex are shown in Fig. 1. The vorticity profiles 

and the vortex location are well preserved by the Roe and HLLC algorithms using the Koren and minmod flux 

limiters after five cycles through the grid.  The vortex core is under-resolved on this computational grid.   The fourth 

order central difference algorithm maintains the vortex shape and position, but also tends to underpredict the 

minimum vorticity in the vortex core.  The HLLC algorithm with the van Albada flux limiter both dissipates and 

distorts the vortex.    
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The minimum pressure in the vortex as a function of time is shown in Fig. 2 for several of the flux algorithms 

provided by OVERFLOW 2.  In theory this pressure should be preserved for all time.  The performance of the 

various algorithms is similar to that shown in Fig. 1.  The Roe and HLLC algorithms yield similar results for the 

Koren flux limiter or when no limiter is employed.     

C. NASA Ames Axisymmetric Bump 

The NASA Ames transonic axisymmetric bump experiment
38

 provides a good test of the ability of a code to 

predict separated flow.  The geometry is shown in Fig. 3.  The model consisted of a sharp-lipped hollow cylinder 

with a 15.2 cm outer surface diameter.  The bump was a circular arc 20.3 cm long and 1.9 cm high that begins 60.3 

cm downstream of the cylinder leading edge.  The upstream intersection of the bump and cylinder was faired with a 

circular arc.  The test was run at a Mach number of 0.875 and a chord Reynolds number of 2.67x10
6
.  Solutions 

were performed on a grid with an initial wall spacing corresponding to a y
+
=1 and y

+
=50.  The stretching ratio for 

the grid was held to 1.2 away from the wall. 

 The surface pressure coefficient for various inviscid flux models using the new SST turbulence model is shown 

in Fig. 4 for an initial wall spacing of y
+
=1.  The velocity distribution at x/c=1 is shown in Fig. 5.  The solutions are 

quite similar for all of the inviscid flux models.  The surface pressure coefficient using wall functions in conjunction 

with the new SST model is shown for the various inviscid flux routines in OVERFLOW 2 for a wall spacing of 

y
+
=50 are shown in Fig. 6.   The velocity distribution for x/c=1 is shown in Fig. 7.  There is some small variation in 

shock location prediction for the various flux routines, but overall the solutions are similar to the y
+
=1 results.  The 

surface pressure coefficient for the three transport turbulence models (SA, k-ω, and SST) are shown for both grid 

spacings in Fig. 8.  The velocity profile at x/c=1 for the three models are shown in Fig. 9.   The solutions for each 

individual model are similar for both wall spacings.  This indicates that the wall functions are performing as 

expected. 

D. Multi-Species 

   The OVERFLOW 2 three gas test case was run to demonstrate the species transport equation solver.  A jet of a 

gas of one species is allowed to blow through a gas of a second species.  Both gases have the same physical 

properties.  All of the fluid is given a free stream Mach number of 0.2 and the flow is inclined at 30 degrees relative 

to the grid.  No viscous terms are included in this test case.  The 61x61 grid is uniform with a spacing of 0.1.  This 

case demonstrates the level of numerical diffusion in a given algorithm.  Fig. 10 shows contours of the jet mass 

fraction for the transport model solved using third order spatial convection terms and the minmod flux limiter.  A 

vertical slice through the jet for the three species convective algorithms in OVERFLOW 2 is shown in Fig. 11.  The 

original third order in space upwind and the third order in space transport model have low diffusion for this 

relatively coarse mesh and produce similar results.  The central difference algorithm has greater numerical diffusion.   

E. Supersonic Shear Layer 
The need for a turbulence model compressibility correction can be seen in predictions of the supersonic 

axisymmetric jet shear layer of Eggers
39

.  The jet exit Mach number was 2.22 and the jet exit static pressure was 

matched to the quiescent outer air.  The solutions were run using the HLLC inviscid flux and the SSOR solution 

algorithm.  A nondimensional time step of 0.5 (based on Uinf) was used without local time stepping.  Fig. 12 shows 

the predicted and measured axial velocity on the jet centerline for the transport turbulence models in OVERFLOW 

2.  Fig. 13 contains velocity comparisons at x/Rnoz=100 downstream locations in the jet.  The compressibility 

corrected SST model has the best comparison with the data.  The uncorrected SST, k-ω, and Spalart-Allmaras 

turbulence models produce mixing consistent with each other.  These models overpredict the mixing resulting in a 

shear layer that is too diffusive.  The Baldwin-Barth model underpredicts the mixing in the shear layer and produces 

a somewhat unphysical profile shape.  

F. WICS L/D=4.5 Bay 

Unsteady computations for the Weapons Internal Carriage and Separation (WICS)
40

 L/D=4.5 bay were 

performed for M=0.95 and Re=2.5x10
6
/ft.  The weapons bay was 18 in. long, 4 in. wide, and 4 in. deep.  The bay 

was located behind a 15 in. flat plate in the experimental configuration.  The computational geometry was a flat 

plate that extended 15 in. upstream of the bay to match the experimental geometry and 25 in. downstream of the bay.  

The sides of the computational grid extended 50 in. on either side of the bay centerline.  The full bay geometry was 

modeled using wall functions.  The wall spacing was chosen as 0.0075 in., which corresponds to a y
+
 of 50 on the 

upstream plate.  The wall spacing inside the bay was set to 0.075 in. The larger wall spacing may be used inside the 
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bay since the wall shear stress is much lower there. The HLLC inviscid fluxes were used with the SSOR solution 

algorithm and the SST-MS
33

 hybrid RANS/LES turbulence model.  The calculations were run 12,000 iterations and 

the final 8192 time steps were statistically analyzed.  The entire computational grid had 1.1x10
6
 points, and 1.2x10

5
 

points were used to discretize the bay. All calculations were performed using the 1.6x10
-5

 second time step that was 

shown to be adequate for time accuracy in Ref. 41. 

 Instantaneous Mach number contours on the bay centerline are shown in Fig. 14.  The flow in the bay is highly 

unsteady.  The time-averaged pressure coefficient on the WICS bay ceiling is shown in Fig. 15.   The hybrid 

turbulence model results are in good agreement with the data.  The overall sound pressure level (OASPL) on the 

ceiling is shown in Fig. 16.  Again the hybrid model result is in reasonable agreement with the data.  Spectral results 

for the K18 transducer locations are shown in Fig. 17.  K18 is located on the bay back wall centerline 0.725 inches 

from the bay opening (Fig. 14).  The K18 transducer is in a dynamic region of the flow because of its proximity to 

the shear layer above the bay.  Seven data windows of 2048 samples were averaged to produce the spectra that are 

presented.  The error
41

 in the OASPL (defined as the difference of the individual window result and the averaged 

result divided by the averaged result) was less than one percent.  The hybrid turbulence model results are in good 

agreement with the data for the first three spectral peaks. 

G. Oscillating Airfoil 

The low angle-of-attack NACA0015 oscillating airfoil case of Ref. 42 is a simple two-dimensional moving body 

problem for turbulent flows.   This case was used as a validation case for unsteady flow for both NXAIR and 

OVERFLOW 2 in Ref. 43.  The flow remains fully attached to the airfoil for most of the cycle, allowing two-

dimensional simulations to adequately resolve the physics of the problem.  Simulations at higher angle-of-attack 

would require three-dimensional simulations to capture the large-scale flow separation.  The case chosen for this 

simulation used the angle-of-attack (α) variation given by 

( )ftoo πα 2sin2.44 +=                            (17) 

where f is the frequency of oscillation (10 cps).  The conditions of the simulation were a Mach number of 0.29 and a 

chord Reynolds number of 1.95x10
6
.
 

A 441x71 “C” grid was used to discretize the NACA0015 airfoil.  The grid included 241 points along the airfoil 

and was packed at both the leading and trailing edges.  The wall spacing was set for a y
+
=1 along the airfoil.  The 

grid is the same as used in the Ref. 43 study.  The time step corresponds to 512 (1/5120 sec.) steps per pitch cycle.  

The calculation was performed using third order HLLC inviscid fluxes, the SSOR solution algorithm, and the 

Spalart-Allmaras turbulence model.  Ten Newton subiterations were used per time step.  Local time stepping was 

not employed.  The solution was run using second order time. 

Force and moment coefficients as a function of airfoil angle-of-attack are shown in Figs. 18-20.  The two-

dimensional simulation is in good agreement with the data and with the results from Ref. 43.  The initial transient 

from the steady state solution disappears after about 0.75 pitch cycles.   

H. Wing/Pylon/Store 

The wing/pylon/store configuration of Lijewski and Suhs
44

 represents a more complicated three dimensional test 

case.  The full-scale wing has a mean chord of 14.16667 ft. and the metric store length is 9.902 ft.  The wind tunnel 

model was 1/20
th

 scale.  The free stream Mach number was 0.95 and the Reynolds number (per foot) was 1.2x10
5
.  

The trajectory was performed for a simulated altitude of 26,000 ft.  The overset grid system has 3.4x10
6
 points in 58 

grids (20 near-body grids and 38 off-body grids).  The grid wall spacing corresponds to a y
+
=1.  The solution was 

run using the third order spatial HLLC algorithm and the SSOR solution algorithm.  The new SST turbulence model 

was used in this simulation.  The nondimensional global time step was 0.0005 seconds.   Three levels of grid 

sequencing (coarse, medium, and fine) were used for 150 time steps each on the coarse and medium grids.  The 

solution on the fine grid was run 1000 steps to obtain the carriage loads using three Newton subiterations per time 

step with second order time.  No local time stepping was used.  The moving body was simulated for 0.5 sec. (1000 

time steps).  Table 3 contains the mass and ejector properties for the store. 

The pressure coefficient distribution on the surface for the carriage location is shown in Fig. 21.   The force and 

moment convergence history on the fine mesh is shown in Figures 22 and 23 respectively.  The loads converge in 

about 500 iterations on the fine grid.   The predicted and experimental location of the store center-of-gravity is 

shown in Fig. 24.  There is excellent agreement for the full trajectory.  The predicted and experimental orientation of 
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the store is shown in Fig. 25.  The CFD predictions and the experiment are in good agreement for the first 0.2 

seconds of the trajectory.  Experimental and predicted force and moment coefficients are shown in Figures 26 and 

27 respectively.  There is good agreement between CFD and experiment for the first 0.3 seconds of the trajectory.     

I. Hypersonic Cylinder Bow Shock 

 The hypersonic bow shock experiment data of Holden, et. al
45

 provides a good test of the ability of the code to 

predict heat transfer at high speeds.  The experiment was run at a free stream Mach number of 16.01, a Reynolds 

number (based on cylinder diameter) of 9.11x10
4
, a free stream temperature of 77.8

o
 R, and a wall temperature of 

540
o
 R.  The test medium can still be considered a perfect gas with a ratio of specific heats of 1.4  at these 

conditions.  The flow over the cylinder is laminar.  This case could not be run with the original algorithms in 

OVERFLOW 2.  The new SSOR solution algorithm and third order HLLC inviscid fluxes was used for this 

application.  The time step was ramped to a nondimensional value (based on free stream velocity) of 0.005.  Local 

time stepping was not used.  Three Newton iterations were used per time step.  Grid wall spacings corresponding to 

y
+
 values of 0.4, 0.2, and 0.1 were run using an 81x81 grid. 

 Pressure contours are shown in Fig. 28.  The shock is captured cleanly in four points.  This can also be seen in 

the centerline Mach number distribution in Fig. 29.  The convergence of the axial force coefficient is shown in Fig. 

30.  The solution required about 5500 iterations to reach convergence.  The surface pressure coefficient is shown in 

Fig. 31.  The prediction compares well with modified Newtonian theory.  Predicted heat transfer is compared to data 

in Fig. 32.  The code does an excellent job in predicting the heat transfer for this case.  The change in the predicted 

stagnation heat transfer with initial wall spacing is shown in Fig. 33.  The predicted heat transfer changes by less 

then five percent over the range shown and varies linearly with initial wall spacing.  

J. Hypersonic Double Cone 
 The hypersonic double cone experiments of Holden, et. al

46
 provides a very demanding test of the ability of the 

code to predict the heat transfer at high speeds.  The geometry for this case is shown in Fig. 34, while the details of 

the flow field are shown in Fig 35.  The attached shock from the first cone interacts strongly with the detached shock 

associated with the second cone. This shock/shock interaction produces a transmitted shock which in turn impinges 

on the second cone. This impingement produces very high surface heat transfer rates and pressures.  In addition, the 

high pressures which result in the cone-cone junction cause the flow to separate in this region. This separation 

bubble in turn interacts with the inviscid flow field, which impacts the strength of the transmitted shock, etc. and the 

entire flow field is very dependent on the strengths of the relative interactions. Computational predictions of this 

type of flow are very sensitive to numerics, grid resolution, etc. (Druget, et. al
47

).   

The OVERFLOW 2 computational results are compared to the experimental results of Holden’s Run 35. The 

experiment was run at a free stream Mach number of 12.06, a Reynolds number of 6.79x10
4 

per foot, a free stream 

temperature of 182
o
 R and a wall temperature of 533

o
 R.  The test medium was pure nitrogen (N2) and is considered 

a perfect gas at these conditions.  The flow conditions were chosen such that the flow over the entire length of the 

cone remains laminar.  This case could not be run with the original upwind algorithms in OVERFLOW 2.  The new 

SSOR solution algorithm and third order HLLC inviscid flux was used for this application.  The time step was 

ramped to a nondimensional value (based on free stream velocity) of 0.0032. Local time stepping was not used.  

Three Newton subiterations were used per time step.  Computations were run on two grids of dimension 609x257x3 

and 1217x513x3.  Results obtained on these grids are referred to as the medium and fine grid solutions respectively.  

The solution required about 5000 iterations to reach convergence.   

Mach number contours for the entire flow field are shown in Fig. 36, and a blow up of the contours in the region 

of the cone/cone intersection is shown in Fig 37.  Heat transfer predictions for both the medium and fine grids are 

shown in Fig 38. The code does an excellent job in predicting the heat transfer for this case, and the solution is 

reasonably well grid converged. 

IV. Conclusion 

An implicit unfactored SSOR algorithm has been added to OVERFLOW 2 for unsteady and moving body 

applications.  The HLLEM and HLLC convective flux models have been added for high-speed flow applications.  A 

generalized transport equation has been added for solution of the two-equation transport turbulence models and the 

species equations.  The generalized transport equation is solved using an unfactored SSOR algorithm.  Three hybrid 

RANS/DES turbulence models have been added for unsteady flow applications.  Wall function boundary conditions 

that include compressibility and heat transfer effects have been also been added to OVERFLOW 2. 
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Steady flow, unsteady flow, moving body, and high speed flow test cases have been provided to demonstrate the 

accuracy, speed, and robustness of the new algorithms.  The unfactored SSOR algorithm can normally be run 

without local time stepping and is more robust than the factored implicit algorithms during the initial transient of a 

calculation.  The HLLC flux scheme was shown to produce good results for a wide range of Mach numbers.  The 

wall functions were shown to produce reasonable results even for separated flows. 

The new algorithms provide a good starting point for extending OVERFLOW 2 to chemically reacting flows.  

The transport equation solver is robust and accurate.  The HLLC scheme can handle extremely large gradients in the 

flow.  Source terms will have to be added for chemically reacting flows.   The code will also require a general 

method for inputting fluid properties and reaction rates. 
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3
 

(IRHS=0) 

Yee
37

 

(IRHS=2) 

Roe
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(IRHS=4) 

HLLEM
15

 

(IRHS=5) 

HLLC
16

 

(IRHS=6) 

Beam and 

Warming
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central (ILHS=0) 

1.93x10
-5

 1.87x10
-5 

1.91x10
-5

 2.04x10
-5 

2.03x10
-5

 

F3D
19

 (ILHS=1) 2.88x10
-5

 2.67x10
-5

 2.91x10
-5

 2.97x10
-5

 2.91x10
-5

 

Pulliam and 

Chaussee 

Diagonalized
9
 

(ILHS=2) 

7.60x10
-6

 7.70x10
-6

 8.10x10
-6

 9.22x10
-6

 8.74x10
-6

 

Jameson and Yoon 

LU-SGS
10

 (ILHS=3) 

7.23x10
-6

 7.59x10
-6

 7.82x10
-6

 8.95x10
-6

 8.48x10
-6
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 (ILHS=4) 7.81x10
-6

 7.96x10
-6

 8.40x10
-6

 9.48x10
-6
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-6

 

Beam and 

Warming
17

 with 

Steger-Warming 

(ILHS=5) 

1.92x10
-5

 1.98x10
-5

 2.06x10
-5

 2.18x10
-5

 2.13x10
-5

 

SSOR
20

 (ILHS=6) 3.15x10
-5

 3.17x10
-5

 3.26x10
-5

 3.34x10
-5

 3.29x10
-5

 

 

Table 1.  Timings (seconds/point/iteration) for OVERFLOW 2 for a 50x50x50 Cartesian grid. 
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 3.76x10
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-5
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-5

 

Pulliam and 
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-5
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Warming
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(ILHS=5) 

2.58x10
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Table 2.  Timings (seconds/point/iteration) for OVERFLOW 2 for a 100x100x100 Cartesian grid. 

 

Weight: 2,000 lb 

Center of gravity:  4.65 ft aft of the store nose 

Roll Moment of Inertia: 20 slug-ft
2 

Pitch Moment of Inertia: 360 slug-ft
2
 

Yaw Moment of Inertia: 360 slug-ft
2 

Forward Ejector Location: 4.06 ft aft of store nose 

Forward Ejector Force: 2,400 lb 

Aft Ejector Location: 5.73 ft aft of store nose 

Aft Ejector Force: 9,600 lb 

 

Table 3.  Store mass and ejector properties for the wing/pylon/store. 
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Figure 1.  Vorticity contours for a convected inviscid vortex. 
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Figure 2.  Minimum pressure for a convected inviscid vortex. 

 

c=20.3 cm 

h=1.9 cm 

D=15.2 cm 

M=0.875 Shock 

Recirculation 

Figure 3.  Geometry for the transonic axisymmetric bump. 
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Figure 4.  Pressure coefficient for the axisymmetric bump with an initial grid spacing of y+=1. 

 

 

Figure 5.  Velocity at x/c=1 for the axisymmetric bump with an initial grid spacing of y+=1. 
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Figure 6.  Pressure coefficient for the axisymmetric bump with an initial grid spacing of y+=50. 

 

 

Figure 7.  Velocity at x/c=1 for the axisymmetric bump with an initial grid spacing of y+=50. 
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Figure 8.  Pressure coefficient for the axisymmetric bump. 

 

 

Figure 9.  Velocity at x/c=1 for the axisymmetric bump. 
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Figure 10.  Jet mass fraction contours for the transport equation for the three gas test case. 

 

 
Figure 11.  Vertical cut of the jet species for the three gas test case. 
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Figure 12.  Centerline velocity distribution for a M=2.2 axisymmetric jet. 

 

 

Figure 13.  Velocity distribution at x/Rnoz=100 for the M=2.2 axisymmetric jet. 
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Figure 14.  Instantaneous Mach number contours in the WICS L/D=4.5 bay centerline. 

 

 

 
Figure 15.  Time averaged pressure coefficient on the WICS L/D=4.5 bay ceiling. 
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Figure 16.  Overall sound pressure level on the WICS L/D=4.5 bay ceiling. 

 

 
 

Figure 17.  Sound pressure level spectrum for the WICS L/D=4.5 bay. 
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Figure 18.  Axial force coefficient for the pitching NACA0015 airfoil. 

 

 

 

Figure 19.  Normal force coefficient for the pitching NACA0015 airfoil. 

 



25th Applied Aerodynamics Conference   

5-8 June 2006, San Francisco, California 

 

American Institute of Aeronautics and Astronautics 

 

25 

AIAA-2006-2824 

 

 

Figure 20.  Pitching moment coefficient for the pitching NACA0015 airfoil. 

 
 

Figure 21.  Pressure coefficient on the wing/pylon/store. 
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Figure 22.  Force convergence history for the wing/pylon/store. 

 

 
 

Figure 23.  Moment convergence history for the wing/pylon/store. 
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Figure 24.  Store trajectory for the wing/pylon/store. 

 

 

Figure 25.  Store orientation for the wing/pylon/store. 
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Figure 26.  Store forces during separation for the wing/pylon/store. 

 

Figure 27.  Store moments during separation for the wing/pylon/store. 
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Figure 28.  Pressure contours for the hypersonic cylinder bow shock 

 

Figure 29. Mach number on the centerline of the hypersonic cylinder bow shock. 
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Figure 30.  Axial force convergence for the hypersonic cylinder bow shock. 

 

Figure 31.  Pressure coefficient for the hypersonic cylinder bow shock. 
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Figure 32.  Heat transfer for the hypersonic cylinder bow shock. 

 

 

Figure 33.  Change in stagnation heat transfer with initial wall spacing for the hypersonic cylinder bow shock. 
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Figure 34.  Geometry for the double cone experiments (all dimensions in inches). 

 

 
Figure 35.  Flow field features for the double cone experiment. 
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Figure 36.  Mach contours for the double cone experiment. 

 

 
 

 

Figure 37.  Mach contours for the double cone experiment separation region. 
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Figure 38.  Heat transfer predictions for the double cone experiment. 

 

 

 

 

 

 

 

 


